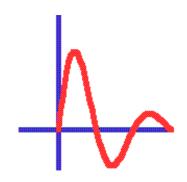

ASSOCIATES

CAE

Damping in ANSYS/LS-Dyna

Prepared by: Steven Hale, M.S.M.E Senior Engineering Manager


ENGINEERING ADVANTAGE

© 2007 CAE Associates

• ANSYS/LS-Dyna allows Rayleigh damping constants α and β only.

What is damping?

- The energy dissipation mechanism that causes vibrations to diminish over time and eventually stop.
- Amount of damping mainly depends on the material, velocity of motion, and frequency of vibration.
- Can be classified as:
 - Viscous damping
 - Damping ratio $\boldsymbol{\xi}$
 - Rayleigh mass-weighted damping constant $\boldsymbol{\alpha}$
 - Hysteresis or solid damping
 - Rayleigh stiffness-weighted damping constant $\boldsymbol{\beta}$

ASSOCIATES

 Most damping in an ANSYS dynamics analysis is approximated as some form of viscous damping:

 $F = C\dot{x}$

- The proportionality constant c is called the *damping constant*.
- The amount of damping is usually described using a quantity called the *damping ratio* ξ (ratio of damping constant c to critical damping constant c_c*).
- Critical damping is defined as the threshold between oscillatory and non-oscillatory behavior, where damping ratio = 1.0.

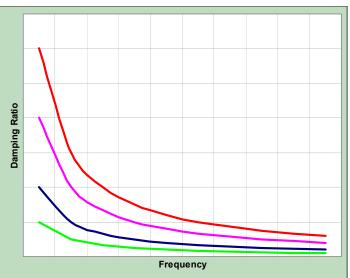
*For a single-DOF spring mass system of mass m and frequency ω , c_c = 2m ω

• Rayleigh damping constants α and β

— Used as multipliers of [M] and [K] to calculate [C]:

$$\begin{split} [\mathsf{C}] &= \alpha[\mathsf{M}] + \beta[\mathsf{K}] \\ \alpha/2\omega + \beta\omega/2 &= \xi \end{split}$$

- Where ω is the frequency, and ξ is the damping ratio.
- Needed in situations where damping ratio ξ cannot be specified.
- Alpha is the viscous damping component, and Beta is the hysteresis or solid or *stiffness* damping component.


ASSOCIATES

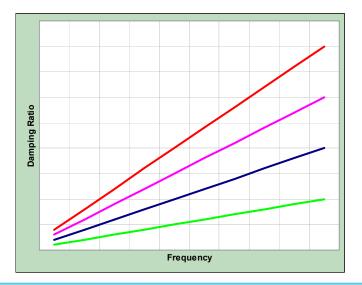
Alpha Damping

- Also known as mass damping.
- Good for damping out low-frequency system-level oscillations (typically high amplitude).
- If beta damping is ignored, α can be calculated from a known value of ξ (damping ratio) and a known frequency ω :

 $\alpha=2\xi\omega$

- Only one value of alpha is allowed, so pick the most dominant response frequency to calculate α .

CA


ASSOCIATES

Beta Damping

- Also known as *structural* or *stiffness* damping.
- Good for damping out high-frequency component-level oscillations (typically low amplitude).
- Inherent property of most materials.
- If alpha damping is ignored, β can be calculated from a known value of ξ (damping ratio) and a known frequency ω :

 $\beta=2\xi/\omega$

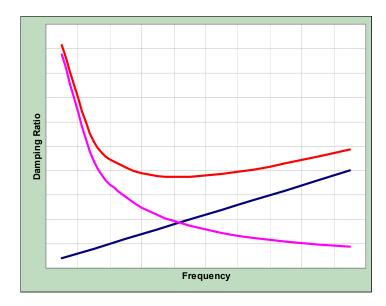
– Pick the most dominant response frequency to calculate β .

www.caeai.com

CA

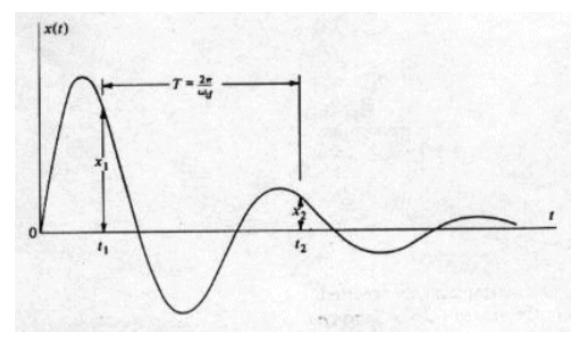
ASSOCIATES

To specify both α and β damping:


Use the relation

www.caeai.com

$\alpha/2\omega + \beta\omega/2 = \xi$

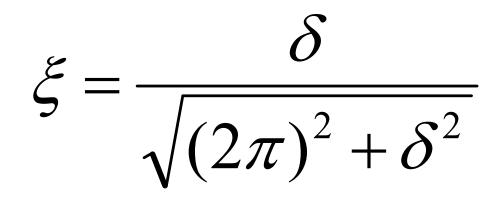

• Since there are two unknowns, assume that the sum of alpha and beta damping gives a constant damping ratio ξ over the frequency range ω_1 to ω_2 . This gives two simultaneous equations from which you can solve for α and β .

$$\xi = \alpha/2\omega_1 + \beta\omega_1/2$$

$$\xi = \alpha/2\omega_2 + \beta\omega_2/2$$

CA

• The damping ratio, ξ , can be obtained from test data as follows

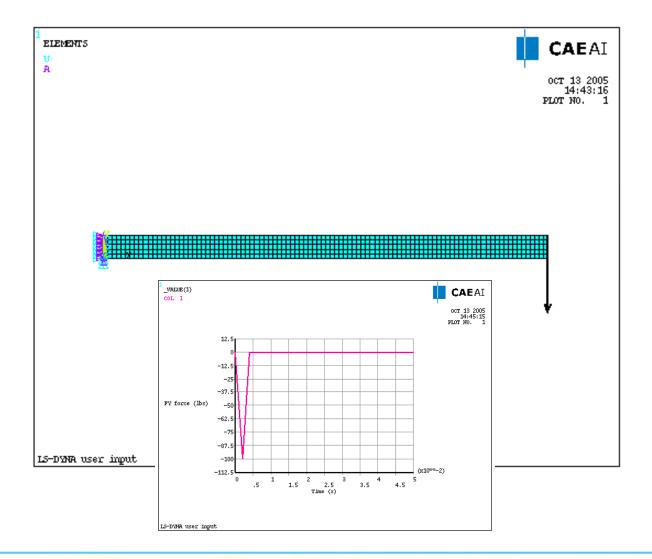

• Calculate the logarithmic decrement, δ , as follows:

 $\delta = \ln(x1/x2)$

• X1 and X2 are two consecutive displacements, one cycle apart.

CAE

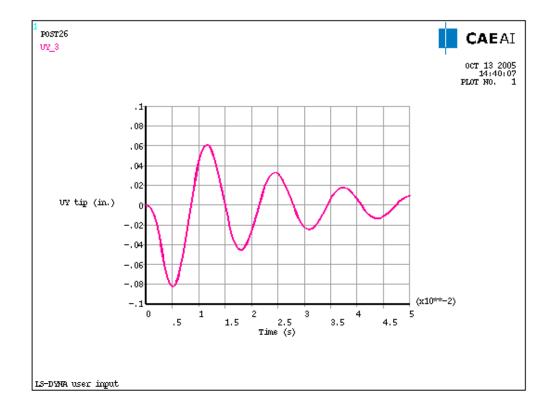
ASSOCIATES


www.caeai.com

ENGINEERING ADVANTAGE

CAE

ASSOCIATES


• Cantilever beam with an impulse load applied to the tip

www.caeai.com

CAE

• Tip deflection: ω = 76.9 cycles/s = 483 rad/s

- $\delta = \ln(0.061/0.033) = 0.614$
- ξ = 0.097
- $\alpha = 2\xi\omega = 93.7 \text{ s}^{-1}$ or $\beta = 2\xi/\omega = 0.0004 \text{ s}$

CAE

- Alpha damping
 - Same alpha damping applied to all parts
 - Preprocessor > Material Props > Damping
 - Set the part number to All parts and do not specify a curve ID

ADamping Options for LS-DYNA Explicit		×
[EDDAMP] Damping Options for LS-DYNA Explicit		
PART number	ALL parts	•
Curve ID	0	
System Damping Constant	93.7	
OK Apply Cancel	Help	

CAL

- Alpha damping
 - Time-varying alpha damping applied to a specific part
 - Create a curve ID for alpha damping vs. time and identify it in the damping input window.
 - Utility Menu > Parameters > Array Parameters > Define/Edit
 - Dimension and fill the time and alpha vectors

Array Parameter TIME2 File Edit Help	
	iew Plane z = 1 💽 💽 👗 利
Initial Constant 0	
Selected: NONE	
	Array Parameter ALPHA
	Eile Edit Help
1 0	Page Increment Full Page View Plane z = 1 View Plane
2 1	Initial Constant 0
	Selected: NONE
	1
	1 93.7
	2 93.7

www.caeai.com

CAP

- Generate a curve that relates the alpha to time
 - Preprocessor > LS-Dyna Options > Loading Options > Curve Options > Add Curve

Add Curve Data for LS-DYNA Explicit	×	l
[EDCURVE] Curve Definitions for LS-DYNA Explicit		
Curve ID Number	1	
Parameter name for abscissa vals	TIME2	
Parameter name for ordinate vals	ALPHA 💌	
OK Apply	Cancel Help	

- Assign the curve to the appropriate part
 - Preprocessor > Material Props > Damping

A Damping Options for LS-DYNA Explicit	X
[EDDAMP] Damping Options for LS-DYNA Explicit	
PART number	1
Curve ID	1
System Damping Constant	
OK Apply Cancel	Help

www.caeai.com

CAE

- Beta damping
 - Constant beta damping applied to a specific part
 - Preprocessor > Material Props > Damping
 - Use a specific part number and do not specify a curve ID

ADamping Options for LS-DYNA Explicit	×
[EDDAMP] Damping Options for LS-DYNA Explicit	
PART number	1
Curve ID	0
System Damping Constant	0.0004
	end ut 1
OK Apply	Cancel Help

CAL